Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress
نویسندگان
چکیده
Proline accumulation is a common response to salt stress in many plants. Salt stress also increased proline concentration in roots, stems, and leaves of Kosteletzkya virginica seedling treated with 300 mM NaCl for 24 h and reached 3.75-, 4.76-, and 6.83-fold higher than controls. Further study on proline content in leaves under salt stress showed that proline content increased with increasing NaCl concentrations or time. The proline level peaked at 300 mM NaCl for 24 h and reached more than sixfold higher than control, but at 400 mM NaCl for 24 h proline content fell back slightly along with wilting symptom. To explore the cause behind proline accumulation, we first cloned full length genes related to proline metabolism including KvP5CS1, KvOAT, KvPDH, and KvProT from K. virginica and investigated their expression profiles. The results revealed that the expressions of KvP5CS1 and KvProT were sharply up-regulated by salt stress and the expression of KvOAT showed a slight increase with increasing salt concentrations or time, while the expression of KvPDH was not changed much and slightly decreased before 12 h and then returned to the original level. As the key enzyme genes for proline biosynthesis, the up-regulated expression of KvP5CS1 played a more important role than KvOAT for proline accumulation in leaves under salt stress. The low expression of KvPDH for proline catabolism also made a contribution to proline accumulation before 12 h.
منابع مشابه
Physiological Responses of Kosteletzkya virginica to Coastal Wetland Soil
Effects of salinity on growth and physiological indices of Kosteletzkya virginica seedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpi...
متن کاملGlobal Gene Expression of Kosteletzkya virginica Seedlings Responding to Salt Stress
Soil salinization is becoming a serious threat to crop yield all over the world. Nowadays, acquainting the specific molecular mechanisms underlying various abiotic stresses especially to salt stress should be of great importance. While the development of the high-throughout sequencing technology promoted the progress powerfully. The intricate perception, transduction and regulation mechanisms u...
متن کاملReference Gene Selection for qPCR Normalization of Kosteletzkya virginica under Salt Stress
Kosteletzkya virginica (L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene in K. virgini...
متن کاملEffect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition
Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...
متن کاملSalt-related Genes Expression Pattern in Salt-Tolerant and Salt-Sensitive Cultivars of Cotton (Gossypium sp.) under NaCl Stress
Salinity is one of the most important limitation factors in development of agricultural products. Cotton has a relative tolerance to salinity; however, salinity reduces its growth during germination and seedling stages. In this research, split-factorial design of time based on randomized complete block design with 3 replications was used. The real-time PCR results for, root, stem, and leaves of...
متن کامل